Langchain 教程-文档检索
一、核心概念:文档检索器的定位与作用
1.流程闭环:
文档加载(Loader)->文档分割(Splitter)→>**文档检索(Retriever)**>大模型交互
核心目标:从海量文档块中快速定位与用户问题最相关的内容,解决“大模型如何高效访问文档”的问题。
2.技术本质:
通过**向量数据库(Vector Store)**存储文档块的向量表示(词嵌入),利用向量相似度计算(如余弦相似度)实现语义检索。
二、核心组件与工作流程
3.三大核心组件:
嵌入模型( EmbeddingModel):将文档块转换为高维向量( 如OpenAl Embeddings、Hugging Face 模型);
向量数据库(如FAISS、Pinecone):存储向量并支持高效近邻搜索;
检索器(Retriever):封装检索逻辑,通过get_relevant _documents()返回相关文档块,
4.标准化流程:
#1.加载并分割文档(前序步骤)
from langchain.document loaders import TextLoadel from langchain.text_splitter import RecursiveCharacterTextSplitter loader = TextLoader("西游记,txt') docs = loader.load() text_splitter =RecursiveCharacterTextSplitter(chunk size=500) split_docs =text_splitter.split_documents(docs)
#2.初始化向量数据库与检索器
from langchain.vectorstores import FAlSS from langchain.embeddings import OpenAlEmbeddings embeddings=OpenAlEmbeddings0 db=FAlSS.from_documents(split_docs, embeddings) retriever=db.as_retriever0) # 默认可检索最相关的1个文档
#3. 执行检索
query="孙悟空是怎么诞生的?" relevant docs=retriever.get relevant documents(query)
三、关键参数与优化点
5.检索参数k:
控制返回的相关文档数量(如k=3 返回最相关的3个块)需根据模型上下文长度调整(避免超过 Token 限制 )。
6.向量数据库对比:
数据库 | 优势 | 适用场景 | 部署方式 |
FAISS | 本地高效搜索,轻量级 | 小规模数据、离线场景 | 本地安装 |
Pinecone | 分布式、高吞吐量 | 大规模数据、云端应多 | 云端 AP1/托管 |
Chroma | 支持持久化存储,易集成 | 原型开发、中小规模 | 本地/云端均可 |
四、核心价值与应用场景
7.RAG(检索增强生成)核心环节:
解决大模型“幻觉”问题:通过检索真实文档信息,确保回答基于事实;
支持长文档问答:将用户问题映射到文档块,避免直接处理全量内容。
8.典型场景:
企业知识库问答(如客服机器人);
学术文献分析(快速定位相关章节);
法律合同审查(检索条款匹配度)。
A 提示栏(Cues/Questions)
笔记要点 | 复习提示问题 |
文档检索器的核心功能 | 为什么说检索器是文档与大模型交互的“中间人”?它解决了什么问题? |
向量数据库的作用 | 为什么需要将文档转换为向量存储?向量数据库如何实现高效检索? |
检索器初始化流程 | 简述从文档加载到检索器初始化的完整代码流程(包含加载、分割、嵌入、存储步骤)。 |
检索参数k的影响 | k值过大或过小会对检索结果产生什么影响?如何根据模型上下文调整? |
不同向量数据库的适用场景 | FAISS 和 Pinecone 分别适合什么场景?本地部署优先选哪个? |
B 总结栏(Summary)
本本文聚焦 LangChain 中文档检索器的核心原理与实践应用,核心内容如下:
1.技术定位:
作为 RAG 流程的关键环节,连接“预处理后的文档块”与“大模型”,实现基于语义的高效信息检索。
2.核心逻辑:
向量化:通过嵌入模型将文档块转换为向量,解决计算机“理解”文本的问题;
近邻搜索:向量数据库通过计算余弦相似度,快速返回与用户问题最相关的文档块(如k=1返回最相关的1个块)实战要点:3.
参数调优:根据模型上下文长度设置k值(如GPT-4 建议k≤5 以避免 Token 超限);
数据库选择:小规模数据优先本地部署FAISS,大规模或云端场景选 Pinecone/Chroma。
4.价值延伸:
检索器是解决大模型“数据边界”问题的关键--让模型具备动态访问外部知识的能力,而非依赖固定训练数据。核心意义:文档检索器是构建智能问答系统、知识库应用的核心组件,掌握其原理与实践是从“基础操作”进阶到“复杂场景开发”的重要标志。
-
初高中文言文译注与赏析
1156 0 24-07-13 -
5个低效率的习惯
说到提高效率,我们总会想到各种时间管理方法,帮助我们安排好各种计划。但有的时候,我们会被一些无关紧要的坏习惯所拖累,其实,我们只要... 946 0 25-03-03 -
蹦跶app(我爱跳广告)_自动跳过开屏广告
蹦跶App,原名“我爱跳广告”,是一款专为安卓用户设计的自动跳过开屏广告的应用。软件设计风格简约清爽,给用户带来极佳的视觉和操作... 909 0 25-06-11 -
2025年银成西综考研全程复习资料
12212e22bd4c92aea584fd6cb921ffe.pdf1_2025西综带读早鸟-生理小测_00.pdf2017联考西医综合【699】大纲.pdf2021考研西综【306】大纲.pdf202... 1164 0 24-08-19 -
多肉植物图鉴小程序
【微信小程序-多肉植物图鉴】是一款专为植物爱好者设计的应用,利用微信小程序平台,为用户提供丰富的多肉植物识别和学习资源。该小程序结... 1344 0 24-09-19 -
在线学折纸飞机 — Fold'N Fly 纸飞机
一个纸飞机数据库,包含易于遵循的折叠说明、视频教程和可打印的折叠计划。找到飞得最远、在空中停留时间最长的最好的纸飞机。包含叠纸飞机... 1175 0 25-01-08 -
遇到杀猪盘 - 利用对方的贪婪
如果遇到杀猪盘,钱在某个软件提不出来,先不要着急,去找客服(当时骗你的人,一般都在微信里有群),假装要加大投资,或者有朋友要来投资... 1266 0 24-11-18 -
鸠摩搜索(Jiumo Search)一款专注于电子书资源搜索与下载的工具
鸠摩搜索(Jiumo Search)是一款专注于电子书资源搜索与下载的工具,旨在为用户提供便捷、高效的图书搜索服务。它支持多种格式的电子... 894 0 25-07-16
发表我的评论
- 这篇文章还没有收到评论,赶紧来抢沙发吧~